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Introduction

The purpose of this report is to discuss the long-term effects of the

orbital debris and micrometeoroid enviroments on materials that are current

candidates for use on space vehicles. In addition, the limits of laboratory

testing to determine these effects are defined and the need for space-based

data is delineated. The impact effects discussed are divided into primary and

secondary surfaces. Primary surfaces are those that are subject to erosion,

pitting, the degradation and delamination of optical coatings, perforation of

atomic oxygen erosion barriers, vapor coating of optics and the production of

secondary ejecta particles. Secondary surfaces are those that are affected by

the result of the perforation of primary surfaces, for example, vapor

deposition on electronic components and other sensitive equipment, and the

production of fragments with damage potential to internal pressurized elements.

The report defines the material properties and applications that are required

to prevent or lessen the effects described.
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Encounter Dynamics and Typical Damage

In dealing with the long-term effects of the micrometeoroid and orbital

debris enviroments on materials used in space, we have to know something about

these solid particles that pack so much energy. Kessler, (Reference i),

presented a detailed look at these enviroments, but let us look at what an

encounter with a micrometeoroid or an orbital debris particle means.

Micrometeoroids, as most of you know, can have Earth encounter velocities

of ii to 73 km/sec. However, the most probable encounter velocity for a

spacecraft in Earth orbit is about 17 km/sec. For modeling purposes, the

meteoroid cumulative flux-mass curve given for NASA use (SP 8013) is tied to an

average velocity of 20 km/sec. Similarly, the average mass density of

meteoroids given by the same model is 0.5 gm/cc. The flux of these particles is

altitude dependent, and they are omni-directional.

Orbital debris particles by definition, have a relative encounter velocity

of 0 to 16km/sec for a spacecraft in Earth orbit. In fact, there is a velocity

distribution and the average encounter velocity is ii km/sec. Most orbital

debris particles are postulated to be aluminum fragments from explosions in

space, and therefore have a mass density of 2.8 gm/cc.

What do these velocities and mass densities mean for the surface of an object

in space that encounters a micrometeoroid or an orbital debris particle? First,

these particulates are very energetic. The specific kinetic energy for a

micrometeoroid at 20km/sec is 2 x 105 joules/gm, and for orbital debris at I0

km/sec, 6 x 104 . So micrometeoroids are several times more energetic than

orbital debris particles, but we must also be concerned with the relative

number of particles of each that are encountered.

Table 1 lists the number of micrometeoroids and orbital debris particles

encountered per square meter of surface area in i0 years. For the particle

sizes of interest in this study, the fluxes of the two enviroments cross over

to make one or the other dominant. However, we are concerned with the total

number of impacts.

DIAMETER

(cm)

0.001

0.01

0.i0

Table 1

NUMBER OF MICROMETEOROIDS AND ORBITAL DEBRIS

PARTICLES ENCOUNTERED IN i0 YEARS (1996 2005).

ORBITAL DEBRIS

(number/sq.meter)

MICROMETEOROIDS

(number/sq.meter)

385-475km 800km 385-475km 800km

5100 12000 2400 2600

16 37 49 53

0.051 0.120 0.019 0
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Secondly, a characteristic of an encounter with these particles is the very

high impact pressures and shocks associated with them. For a micrometeoroid,

the average impact pressure is 2.5 megabars and for the orbital debris, 1.9

megabars, a megabar being equal to 14.5 x 10 6 psi. Figure 1 shows a graphical

means of determining the initial impact pressure as a function of the particle

or shocked material velocity. The intersections of the left-running projectile

curves and the right-running target curves denote the impact pressure. Three

aluminum projectiles are shown at 8, 12 and 16 km/sec, and the target materials

are graphite-epoxy, aluminum and a ceramic.

Initial Shock Pressure
Effect of Shield Material Density

[] Aluminum

0 Fiberglass

Ceramic

Aluminum projectile, V = 8 Km/S
O Aluminum projectile, V = 12 Km/S

f Aluminum projectile, V -- 16 Km/S

2

] I

4 6 8 10 12 14

PaMiclevelocity, Up(km/sec)

Graphical Solution for the Initial Impact Pressure.

Figure 1

16
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These very high pressures decay rapidly but remain well above the material

strength so that the elements close to the impact point flow like a liquid. In

addition, the impact process of instantaneous compression followed by slower

release of pressure causes the projectile and target material to be locally

heated due to an increase of entropy. The temperatures generated are always

high enough to melt the materials in contact, and quite often to vaporize them.

Table 2 shows some metallic materials of interest with their melting and

vaporization temperatures, and the impact pressures and velocities required to

achieve these states, (Reference 2).

Table 2

IMPACT SHOCK HEATING

MATERIAL TEMPERATURE

MeltoC VaPoC

Aluminum 660 2057

Cadmium 321 767

Steel 1535 3000

Lead 327 1620

Titanium 1800 >3000

INCIP. MELT COMP. MELT INCIPo VAPOR

Mbar Km/s Mbar Km/s Mbar Km/s

0.65 5.6 0.90 6.6 1.67 10.2

0.40 3.0 0.60 3.9 0.88 5.2

I. 80 7.9 2. i0 8.8 >>9

0.30 2.0 0.35 2.6 0.90 4.8

I. 30 7.6 >>8

261



Figure 2 shows a cross-section of a laboratory impact crater formed in an
aluminum Ii00-0 alloy plate by a 45 milligram aluminum projectile at just over
6 km/sec. The near hemispherical shape and raised lip is characterisic of a
hydrodynamic impact crater. In this case, the impact shock pressure is 0.8
megabars, and from Table 2 one would expect the material to have been melted.
Another feature illustrated in Figure 2 is the near spallation of the rear
surface. A thin segment of the aluminum plate has separated due to the tensile
stress induced by the shock after reflection. The rarefaction or release stress
wave reflected off the rear surface was still high _nough to cause this alloy
to fail in tension. Incidentally the specific KE was about 2 x 104 joule/gm.

Hypervelocity Impact Cross-section' II00-F AluminumAlloy Plate.

Figure 2
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In Figure 3, we see a cross-section of an impact into laminated aluminum plates

held together mechanically. It is a useful illustration of the impact forces

that cause the problems seen in hypervelocity encounters with the first surface

of a spacecraft. We see delamination of the upper layers, peeling under the

influence of shearing forces at edges of the crater, shock compression in the

layers and the rebound of a significant proportion of the target.

ORIGINAL PAGE'

.BL:ACK AND WHITE PHOTOGRAPH

Side View Sectioned Hypervelocity Impact into an Aluminum Alloy Laminate.

Figure 3
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In Figure 4, the top view, we see the splitting of the material in the

process of peeling back of the upper layers. These two views are important in

understanding the basic processes taking place in delamination and ejection of

surface materials, such as coatings and atomic oxygen barriers, etc., examples

of which will be shown shortly. This impact occurred at 7 km/sec using a Pyrex

glass projectile so the impact pressure was over 1 megabar and the specific KE,

2.5 x 10 4 joules/gm.

Top View of Figure 3.

Figure 4
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The target described previously is a reasonable analogue of the front surfac_

of a glass or similar brittle material that has been impacted by a hypervelocity

projectile. In this aluminum target there is a residual crater as is usually

seen in glass targets, (Figure 5) and there are two levels of ejected spall

rings, also seen in the glass target. Also the deeper layer of the aluminum

stack separated from the main body is analogous to the sub-surface fracture

zone present in most glass targets at laboratory impact velocities. The glass

target was impacted by a 0.16 cm glass (2.3 gm/cc) projectile at 7.3 km/sec.

This is approximately the same impact pressure as for the aluminum laminated

target.

This completes our quick look at the dynamic characteristics of

hypervelocity impacts and some of the typical effects on the spacecraft first
surface.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Damage to a 2 cm thick Glass Target by a 0.15 cm Projectile at 7.3 km/sec.

Figure 5
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Long-term Damage Effects

Let us now discuss the long-term effects of the micrometeoroid and orbital

debris environments on typical materials used in space. Impact effects will be

divided into those that could cause a problem to the first or outer surface of

a spacecraft, and those that can also affect the surface or region behind it.

First surfaces are primarily affected by the smaller particles in both

environments, and Table 3 lists the penetration depths and diameters that can

be expected for orbital debris in aluminum and glass. The equations used were

developed during the Apollo program, (Reference 3), and the spall diameters are

consistent with the target shown in Figure 5. For typical large spacecraft that

have aluminum first surface thicknesses of 0.16 to 0.25 cm as bumper shields,

particles under 1 mm would not penetrate.

PENETRATION DEPTHS AND CRATER DIAMETERS

IN ALUMINUM AND GLASS SURFACES.

MATERIAL PROJECTILE CRATER INNER SPALL OUTER SPALL CRATER

DIAMETER DEPTH DIAMETER DIAMETER DIAMETER

(cm) (cm) (cm) (cm) (cm)

Aluminum 0.001 0.0017 ............ 0.0034

(2024T3)

0.010 0.0194 ............ 0.0390

0.i00 0.2210 ............ 0.4420

Aluminum 0.001 0.0025 ............ 0.0050

(ll00-F)

0.010 0.O287 ........... O.0570

0.i00 0.3271 ............ 0.6540

Glass 0.001 0.0012 0.012 0.024 ......

(7940)

0.010 0.0138 0.138 0.276 ......

0.i00 0.3615 3.620 7.230 ......

Table 3
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The types of impact problems to be expected on first, or for that matter

any single surface such as solar panel or radiator paddles, are discussed next.

Erosion, pitting and degradation of optical transmissibility as shown in

Figure 6. This impact damage resulted from a 0.4 mm glass projectile (2.3

gm/cc) at 7.4 km/sec. The shock damage diameter is 7 mm which gives an obscured

diameter of about 0.4 sq.cm. Although there would only be between 2 and 3

impacts of this size per square meter in ten years for the combined

environments, the summation of the crater areas for this size and all smaller

sizes could present a problem.

Impact Damage Area caused by a 0.04 cm Projectile at 7.4 km/sec.

Figure 6
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Ejection of mirror surfaces and optical coatings by impact spallation

is shown in Figure 7. The particular target shown resulted from a double impact

of 0.17 mm tungsten-carbide projectiles at over 6 km/sec and it is illustrative

of the effect of impacts on mirrored surfaces. The actual damage areas will be

similar to the values quoted for pitting discussed previously.

Impact Damage to a Mirrored Glass Surface by Hypervelocity Impact.

Figure 7
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Delamination of composite materials by shock effects. Figures 8a (entry)

and 8b (exit) show the results of a 2.4 mm aluminum projectile impacting a

graphite-epoxy tube at 7.48 km/sec. The entry side breaks up the projectile

like a bumper and the impact of the debris plume causes the extensive damage

seen on the exit side. This size of impact has a 70% chance of occurring at

least once in I0 years for a tubular structure area the size of the Phase i

Space Station Freedom.

Graphite-Epoxy Tubular Strut: Hypervelocity Impact Entry.

Figure 8a
ORrGTN_L I_QE ""
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Graphite-Epoxy Tubular Strut: Hypervelocity Impact Exit.

Figure 8b
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Perforation and peeling of barrier layers used to protect materials subject

to atomic oxygen erosion. These impact effects are shown in Figure 9. The

smaller one is the result of a 0.77 mm glass projectile impact at 4.7 km/sec,

and the larger one is due to a 1.5 mm aluminum projectile at 6.7 km/sec. The

barrier layer was a 0.05 mm thick aluminum 2024-T3 bonded sleeve on a 35 x 106

modulus tube. Orbital debris particles equivalent to these sizes can be

expected to impact the Phase 1 Space Station Freedom several times in a

I0 year period.

I
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Aluminum-coated Graphite-Epoxy Strut" Impact Damage to Coating.

Figure 9
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Flammability, vapor deposition and toxicity. Figure I0 is a view of a

space-suit element with the outer thermal barrier material folded back to

reveal the large hole in the aluminized mylar insulation layer, the hole and

blackening of a kapton felt layer and the delamination of a fiberglass

laminate. The projectile in this test was a 1.75 mm nylon projectile that

impacted at 8.6 km/sec.

NYLONPROJECTILE(LtD _,;0,_5)

t _ DI_TEA: 1.7S mDENSITY: 1.]4 _cc
VELOCITY: 8.6 _sec

Space-suit Element showing Damage to Materials in the Layupo

Figure i0
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Impacts, molten splatter and vapor deposition result from an impact on a

first surface. Oblique impacts are the norm and there will be ejecta from the

impact site that will affect other spacecraft components or sensors in the line

of flight. Figure Ii is an illustration of secondary impacts on solar cell

elements bonded to an aluminum L-section. The damage to the cells is extensive,

and the magnification factor for brittle materials can be seen by comparison

with the impacts on the aluminum substrate. One impact by a micrometeoroid or

an orbital debris particle can result in thousands of secondary impacts on

another surface in the way.

Effect of Impact Ejecta on Sola_--cell Bonded to Aluminum Substrate.

Figure ll
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Second or subsequent surfaces are those that are exposed to the results of

perforation of the first surface. The high-speed photograph, Figure 12, from

Reference 4. It shows a projectile debris plume generated by an impact on the

first sheet of a dual -sheet target and illustrates how the second sheet and

the void between can be affected. The plume can be a vapor, molten droplets

or even solid fragments. Generally, the second surface is the component that

is being protected, but in some instances it could be vulnerable system

components.

FLIGHT DIRECTION

3.18mm Cd SPHERE

IMPACTING AT 6.43 km/sec
1.22mm Cd SHIELD
5.08 cm SPACING
7 tJsec AFTER IMPACT

F tash X-Ray Showing Effoct of Oblique. Impaci

Oblique Impact in Two-sheet Target showing Debris Plume.

Figure 12
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Some of the effects of impacts by micrometeoroids or orbital debris

particles are as follows:

a. Shield and projectile fragment damage to pressure vessels, wire

bundles and sensitive electronic packages.

In Figure 13, a wire cable has been impacted by a large fragment from a

debris plume resulting in significant damage.

Electrical Cable Impacted by a Hypervelocity Projectile.

Figure 13
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b. Molten droplet and vapor deposition on electronic components could
cause shorts.

Examples of these can be seen in the next three figures. Figure 14 shows

vapor deposited on the rear surface of the first sheet. A molten aluminium

droplet adhering to an aluminum second sheet surface is shown in Figure 15.

In Figure 16, a molten aluminum splash and vapor deposit is shown coating a

copper second sheet surface.

ORIGINAL PAGE
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Rear View of First Sheet Impacted showing Vapor Deposited.

Figure 14
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Molten Aluminum Droplel on Aluminum Second Sheet Surface.

Figure 15
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Molten Aluminum Splash and Vapor Deposit on Copper Second Sheet Surface.

Figure 16
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c. Destruction of a large area of multi-layer thermal insulation (MLI)

barriers often placed in the void behind the first surface to protect the

second surface.

This effect can be seen in Figure i0, where the aluminized MLI is part of

the thermal protection in a space suit.

d. Thermal effects such as burning, charring and toxic by-products.

These effects are also visible in Figure I0.
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Material Properties and Practices for Space Durability

The information presented above should lead to a better understanding of

how some of the material properties and environmental shielding practices can

be improved upon or avoided for long-term space applications. However, the

following list of avoidable materials is offered as a starting point:

a). Brittle materials such as glass for mirrors and uncovered windows or

lenses, and monolithic ceramic shields. Tough, transparent, optically

acceptable synthetic materials respond very well to laboratory hypervelocity
impacts.

b). Deposited optical coatings will be easily delaminated and ejected over

an area 20 to 30 times the size of the impacting particle. The use of tinting

in conjunction with the suggested materials in (a) above would be a solution.

c). Laminated materials can be used provided that: impact-caused

delaminations do not present a problem. The nonmetallic laminates would be

beneficial first surfaces from the secondary impact effects standpoint.

d). Low vaporization temperature materials to avoid vapor coating
components that would malfunction.

e). Glass mirrors. Metal mirrors should be the rule as far as possible.

f) o Laminated first surfaces with oriented fibers dictated by strength

requirements should have an external layer of basket-woven fibers bonded to it.

This prevents the peeling along the oriented fibers that results from a

hypervelocity impact.

g). Electronic and electrical components should be protected by a double

shield to prevent short circuits due to molten droplets or vapor from a first
surface impact debris plume.
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Spaceflight Experiment Requirements

There is a definite need for in-situ experiments to determine the long-term

effects of micrometeoroid and orbital debris impacts on materials used in

space. As is indicated by the numbers of impacts as a function of size given in

Table i, test panels required to obtain data on particles 1 mm and larger would

be prohibitively large. For instance, a i00 sq.meter test panel exposed for I0

years would collect between 7 and 14 total impacts of this size, depending on

orbital altitude. It is however, reasonable to consider flight testing

materials subjected to the smaller particles. A I0 sq.meter panel would collect

a total of 630 to 900 impacts of the 0.I mm particle size, and probably 1 or 2

of the 1 mm size, in i0 years of exposure. Obviously, shorter durations of 2 or

3 years would still yield useful data for the 0.i mm and all smaller sizes.

Laboratory hypervelocity impact facilities cannot launch projectiles in the

range of sizes between 0.I mm and 0.01 mm at velocities greater than 6 km/sec.

Although it is not reasonable to expect dedicated flight experiments for

micrometeoroid and orbital debris impacts for sizes larger than 2 mm, it should

be possible to use reserved areas of the Space Station Freedom truss structure to

attach test panels requiring a long exposure.

Laboratory hypervelocity impact facilities have successfully launched 0.2

mm projectiles when required, although normal testing calls for 0.8 to 3.2 mm.

The velocity ranges most readily obtained for all these sizes are between 5.5

and 7.5 km/sec. As a result, ground-based hypervelocity testing of new

materials for space use could be a part of an overall plan to develop space

durability for the impact environments.
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Conclusion

The long-term effects of the micrometeoroid and orbital debris environments

on materials that are commonly used in space are dominated by the particles

smaller than I mm in size. These particles are numerous enough to cause erosion

of surface layers, optical degradation by pitting and vapor deposition, the

destruction of coated and mirrored glass surfaces, the delamination and

penetration of anti-atomic oxygen coatings and impact ejecta effects on

surrounding structure. If a penetration of an outer layer of a spacecraft

occurs, the impact debris plume can cause damage to electrical and electronic

elements by solid particulate matter, molten droplets, and vapor deposition.

Some materials are more susceptible to be damaged than others, and some are

worse from the standpoint of secondary effects. This report presents

information that could lead to enhanced long-term performance of current

materials and the development of new materials designed to mitigate the effects
described.
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